NAME

## Ionic Valance in Mineral Formulas

Guidelines:

In mineral formulas, the following guidelines are useful in determining the valance of an ion.

- 1. Oxygen ions have a charge of -2
- 2. Alkali metals ions and hydrogen have a charge of +1
- 3. Alkaline earth ions have a charge of +2
- 4. Halogen ions have a charge of -1
- 5. Sulfur anion has a charge of -2, in sulfide minerals Exception: When sulfur is present as the  $S_2$  dimer, it has a charge of -1
- 6. Silicon is usually +4
- 7. Aluminum is usually +3

8. Water molecules, ammonia  $(NH_3)$  and carbon dioxide  $(CO_2)$  are neutral, so there presence in a mineral formula may be ignored

Applying these guidelines allows the determination of the unknown valance state of ions in most minerals:

Example: What is the charge on Mn in rhodonite, MnSiO<sub>3</sub>?

Solution: Oxygen is -2, so three oxygens are -6 Silicon is +4, so  $SiO_3$  is -2 Therefore, Mn is +2

Apply the guidelines to solve the unknown valance state of the minerals on the back side of this sheet.

| Mineral or group                       | Formula                                                          | lon | <b>Charge on ion</b><br>(List numerical charge) |
|----------------------------------------|------------------------------------------------------------------|-----|-------------------------------------------------|
| 1. Klockmannite                        | CuSe                                                             | Cu  |                                                 |
| 2. Stainierite                         | CoO(OH)                                                          | Со  |                                                 |
| 3. Baddeleyite                         | ZrO <sub>2</sub>                                                 | Zr  |                                                 |
| 4. Epsomite                            | MgSO <sub>4</sub> ·7H <sub>2</sub> O                             | S   |                                                 |
| 5. Chlorothionite                      | $K_2Cu(SO_4)Cl_2$                                                | Cu  |                                                 |
| 6. Adelite                             | CaMg(AsO <sub>4</sub> )F                                         | As  |                                                 |
| 7. Vanadinite                          | Pb <sub>5</sub> (VO <sub>4</sub> ) <sub>3</sub> Cl               | V   |                                                 |
| 8. Pintadoite                          | $Ca_2V_2O_7{\cdot}9H_2O$                                         | V   |                                                 |
| 9. Rammelsbergite<br>(Hint: H = 5.5-6) | NiAs <sub>2</sub>                                                | As  |                                                 |
| 10. Schwartzembergite                  | Pb <sub>5</sub> (IO <sub>3</sub> )Cl <sub>3</sub> O <sub>3</sub> | Ι   |                                                 |